Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Author K. F. Riley
ISBN-10 9781139450997
Release 2006-03-23
Pages
Download Link Click Here

The third edition of this highly acclaimed undergraduate textbook is suitable for teaching all the mathematics for an undergraduate course in any of the physical sciences. As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.



Mathematical Methods for Physicists

Mathematical Methods for Physicists Author George Brown Arfken
ISBN-10 9780123846549
Release 2012
Pages 1205
Download Link Click Here

Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider range of difficulty of exercises. Revised and updated version of the leading text in mathematical physics Focuses on problem-solving skills and active learning, offering numerous chapter problems Clearly identified definitions, theorems, and proofs promote clarity and understanding New to this edition: Improved modular chapters New up-to-date examples More intuitive explanations



Problems for Physics Students

Problems for Physics Students Author K. F. Riley
ISBN-10 0521270731
Release 1982-11-25
Pages 179
Download Link Click Here

This book is a collection of some 400 physics problems, with hints on their solutions, and answers. The physics covered encompasses all areas studies by final-year (advanced level) students in schools and high schools. The author has concentrated on presenting interesting (and to some extent unusual) problems which can be solved using the physical principles normally taught in advanced school courses. By working through the questions, the student will become adept at selecting and applying physical principles appropriate to any particular problem. Problems for Physics Students will provide stimulation and practical help not only for those preparing for pre-university examinations in physics, but also for first-year physics and engineering students studying at universities and other institutions offering first-degree courses. Teachers of physics will find this an invaluable sourcebook for ideas to generate discussion, and for unusual problems to stimulate interest.



Mathematical Methods For Physicists International Student Edition

Mathematical Methods For Physicists International Student Edition Author George B. Arfken
ISBN-10 9780080470696
Release 2005-07-05
Pages 1200
Download Link Click Here

This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition. * Updates the leading graduate-level text in mathematical physics * Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering * Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relations New in the Sixth Edition: * Updated content throughout, based on users' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell's equations * A new chapter on probability and statistics * More elementary sections have been deleted



Methods of Mathematical Physics

Methods of Mathematical Physics Author Harold Jeffreys
ISBN-10 0521664020
Release 1999-11-18
Pages 718
Download Link Click Here

This well-known text and reference contains an account of those parts of mathematics that are most frequently needed in physics. As a working rule, it includes methods which have applications in at least two branches of physics. The authors have aimed at a high standard of rigour and have not accepted the often-quoted opinion that 'any argument is good enough if it is intended to be used by scientists'. At the same time, they have not attempted to achieve greater generality than is required for the physical applications: this often leads to considerable simplification of the mathematics. Particular attention is also paid to the conditions under which theorems hold. Examples of the practical use of the methods developed are given in the text: these are taken from a wide range of physics, including dynamics, hydrodynamics, elasticity, electromagnetism, heat conduction, wave motion and quantum theory. Exercises accompany each chapter.



Mathematical Methods for Scientists and Engineers

Mathematical Methods for Scientists and Engineers Author Donald Allan McQuarrie
ISBN-10 1891389246
Release 2003-01-01
Pages 1161
Download Link Click Here

Intended for upper-level undergraduate and graduate courses in chemistry, physics, mathematics and engineering, this text is also suitable as a reference for advanced students in the physical sciences. Detailed problems and worked examples are included.



Mathematics for Physics

Mathematics for Physics Author Michael Stone
ISBN-10 9780521854030
Release 2009-07-09
Pages 806
Download Link Click Here

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics - differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study.



Physical Mathematics

Physical Mathematics Author Kevin Cahill
ISBN-10 9781107005211
Release 2013-03-14
Pages 666
Download Link Click Here

Using examples from contemporary physics, this textbook clearly explains the mathematics students of physics need for their courses and research.



MATHEMATICAL METHODS IN THE PHYSICAL SCIENCES 3RD ED

MATHEMATICAL METHODS IN THE PHYSICAL SCIENCES  3RD ED Author Boas
ISBN-10 8126508108
Release 2006-09-01
Pages 864
Download Link Click Here

Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.



Modern Mathematical Methods for Physicists and Engineers

Modern Mathematical Methods for Physicists and Engineers Author C. D. Cantrell
ISBN-10 0521598273
Release 2000-10-09
Pages 763
Download Link Click Here

An up-to-date mathematical and computational education for students, researchers, and practising engineers.



Mathematical Methods in Physics and Engineering

Mathematical Methods in Physics and Engineering Author John W. Dettman
ISBN-10 9780486169361
Release 2013-01-23
Pages 448
Download Link Click Here

Algebraically based approach to vectors, mapping, diffraction, and other topics covers generalized functions, analytic function theory, Hilbert spaces, calculus of variations, boundary value problems, integral equations, more. 1969 edition.



Mathematical Methods in Engineering and Physics

Mathematical Methods in Engineering and Physics Author Gary N. Felder
ISBN-10 9781118449608
Release 2015-04-13
Pages 830
Download Link Click Here

This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.



A Guided Tour of Mathematical Methods

A Guided Tour of Mathematical Methods Author Roel Snieder
ISBN-10 0521834929
Release 2004-09-23
Pages 507
Download Link Click Here

Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks.



Mathematical Physics

Mathematical Physics Author Sadri Hassani
ISBN-10 9783319011950
Release 2013-07-27
Pages 1205
Download Link Click Here

The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.



Mathematical Physics

Mathematical Physics Author Bruce R. Kusse
ISBN-10 9783527618149
Release 2010-01-05
Pages 689
Download Link Click Here

What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations. The book moves on to explain complex topics that often fall through the cracks in undergraduate programs, including the Dirac delta-function, multivalued complex functions using branch cuts, branch points and Riemann sheets, contravariant and covariant tensors, and an introduction to group theory. This expanded second edition contains a new appendix on the calculus of variation -- a valuable addition to the already superb collection of topics on offer. This is an ideal text for upper-level undergraduates in physics, applied physics, physical chemistry, biophysics, and all areas of engineering. It allows physics professors to prepare students for a wide range of employment in science and engineering and makes an excellent reference for scientists and engineers in industry. Worked out examples appear throughout the book and exercises follow every chapter. Solutions to the odd-numbered exercises are available for lecturers at www.wiley-vch.de/textbooks/.



Mathematical Methods

Mathematical Methods Author Sadri Hassani
ISBN-10 9780387215624
Release 2013-11-11
Pages 659
Download Link Click Here

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.



A First Course in Computational Physics

A First Course in Computational Physics Author Paul L. DeVries
ISBN-10 9780763773144
Release 2011-01-28
Pages 433
Download Link Click Here

Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society